Biosynthesis of storage proteins in developing rice seeds.
نویسندگان
چکیده
Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the starchy endosperm protein of rice (Oryza sativa L. Japonica cv Koshihikari) during seed development confirmed that storage protein begins to accumulate about 5 days after flowering. Two polypeptide groups, 22 to 23 and 37 to 39 kilodaltons, the components of glutelin, the major storage protein in rice seed, appeared 5 days after flowering. A 26-kilodalton polypeptide, the globulin component, also appeared 5 days after flowering. Smaller polypeptides (10- to 16-kilodaltons) including prolamin components, appeared about 10 days after flowering. In contrast, the levels of the 76- and 57-kilodalton polypeptides were fairly constant throughout seed development. Transmission electron microscopy and fractionation by sucrose density gradient centrifugation of the starchy endosperms at various stages of development showed that protein body type II, the accumulation site of glutelin and globulin, was formed faster than protein body type I, the accumulation site of prolamin.The 57-kilodalton polypeptide but not the glutelin subunits was labeled in a 2-hour treatment with [(14)C]leucine given between 4 and 12 days after flowering to developing ears. In vivo pulse-chase labeling studies showed the 57-kilodalton polypeptide to be a precursor of the 22 to 23 and 37 to 39 kilodalton subunits. The 57-kilodalton polypeptide was salt-soluble, but the mature glutelin subunits were almost salt insoluble.In vitro protein synthesis also showed that the mRNAs directly coding the 22 to 23 and 37 to 39 kilodalton components were absent in developing seeds and that the 57-kilodalton polypeptide was the major product. Thus, it was concluded that the two subunits of rice glutelin are formed through post-translational cleavage of the 57-kilodalton polypeptide.
منابع مشابه
Overexpression of a Gene Involved in Phytic Acid Biosynthesis Substantially Increases Phytic Acid and Total Phosphorus in Rice Seeds.
The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP₆) biosynthesis-related genes, as InsP₆ is a major storage form of P in seeds. The rice (Oryza sativa L.) low...
متن کاملSulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed.
It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to ...
متن کاملEffects of Reduced Prolamin on Seed Storage Protein Composition and the Nutritional Quality of Rice
Rice seed storage proteins accumulate in two types of protein body (PB-I and PB-II) that are nutrient sources for animals. PB-I is indigestible and negatively affects rice protein quality. To improve the nutritional value of rice seeds we are aiming to engineer the composition and accumulation of endogenous seed storage proteins. In this study we generated transgenic rice plants in which 13 kD ...
متن کاملOpaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm.
In maize, a series of seed mutants with starchy endosperm could increase the lysine content by decreased amount of zeins, the main storage proteins in endosperm. Cloning and characterization of these mutants could reveal regulatory mechanisms for zeins accumulation in maize endosperm. Opaque7 (o7) is a classic maize starchy endosperm mutant with large effects on zeins accumulation and high lysi...
متن کاملLack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice
The major seed storage proteins (SSPs) in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 70 4 شماره
صفحات -
تاریخ انتشار 1982